13 Best Books for Data Scientists

13 best books for Data Scientists, curated by Nick Singh, a former Data Scientist and best-selling Author!

13 Must-Read Data Science Books To 10x Your Data Science Career

As the best-selling authors of Ace the Data Science Interview and creators of SQL interview platform DataLemur, we've read a TON of Data Science books over the years. Here's the absolute 13 best books for Data Scientists that want to take their career to the next level. While many of these books are directly about Data Science and Machine Learning, we also threw in some of our favorite business and product management books for Data Scientists. Let's face it: our field is insanely interdisciplinary, and as such, it's beneficial to read broadly.

What are the best books to learn Data Science?

The 3 best books to learn Data Science are Advancing Into Analytics for people completely new to data science, R for Data Science for a practical introduction to Data Science in R, and Data Science for Business for an introduction to how Data Science is applied to solve real-world business problems.

The top 3 books to learn Data Science are Advancing into Analytics, R for Data Science, and Data Science for Business.

Advancing Into Analytics: From Excel to Python and R

If you don’t have any programming experience, but are handy at Excel, Advancing Into Analytics is the perfect gentle introduction to using R & Python for analytics. By covering fundamental concepts in Excel first, and then showing how they directly translate into a programming language, this book eases you into data analytics making it the best book for total beginners.

Nick Singh recommends the book Advancing into Analytics for beginner Data Scientists and Data Analysts

For more Data Analytics suggestions (rather than Data Science), you should see our favorite 17 books for Data Analysts.

R for Data Science: Import, Tidy, Transform, Visualize, and Model Data

R for Data Science is the perfect hands-on introduction to Data Science. The book does a great job balancing implementation details in R while also giving you a big-picture understanding of the data science process, and best of all it's FREE for an online copy, but you can choose to buy it on Amazon here. One caveat: if you do have previous experience with programming, especially in Python, it’s best to skip R and just dive into the Python data analysis stack instead.

The book R for Data Science by Haley Wickham

Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking

Data Science for Business is a great conceptual introduction to Data Analytics and Data Science. The authors do a great job showing the business applications of various techniques, as well as the meta-concerns Data Scientists need to be concerned with. However, it lacks practical exercises and code snippets, making it not a great hands-on book. As such, we recommend this book to people who need to be familiar with Data Science at a high-level, but don’t need to be responsible for implementing data science details in their day-to-day work.

The book Data Science for Business


What are the best books to learn Machine Learning?

The 3 best books for Data Scientists to learn Machine Learning are Intro to Statistical Learning for the hard-core theory behind ML, the Hundred-Page Machine Learning book for a quicker crash-course into the math and concepts behind ML, and Hands-On Machine Learning with Scikit-Learn and TensorFlow for a practical tutorial on building ML models.

3 Best Machine Learning Books for Data Scientists are Intro to Statistical Learning, Hands on ML with Scikit-Learn, and the 100-Page ML Book.

Intro to Statistical Learning

Intro to Statistical Learning (& it's even harder cousin, Elements of Statistical Learning) are both free & amazing resources for learning machine learning theory. For Data Science & Machine Learning practitioners, it's never a waste of time to brush up on your fundamentals! While hailed as the bible of ML, be warned: it's challenging to read and most people give up after a few chapters! If you need a more compact intro, check out the next ML book suggestion.


The Hundred-Page Machine Learning Book

For a lighter introduction to the fundamentals of machine learning, this 100 page book (well...137 pages but who's counting) strikes the right balance between enough math to explain the central ideas in ML, without overwhelming the reader. 


Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems

True to its name, this book is the best hands-on introduction to Machine Learning. Hands-On Machine Learning is rich in concrete examples, and light on theory, making it the perfect read for someone who is already familiar with the fundamentals of Data Science and ML but is now hungry to tangibly apply what they know. 

Hands-on Machine Learning by Aurelien Geron is a great ML book!

What are the best books for your Data Science career?

The 3 best books for Data Scientists who are trying to succeed in their career and land data science jobs are Ace the Data Science Interview for interview prep, the Data Science Handbook for career and life insights from top Data Scientists, and So Good They Can't Ignore You to help you more broadly design a successful career.

Ace the Data Science Interview

Ace the Data Science Interview is the best book to prepare for a Data Science Interview. It covers the most frequently-tested topics in data interviews like Probability, Statistics, Machine Learning, SQL query questions, Coding (Python), and Product Analytics. With 201 data science interview questions to practice with, this book is a must-read for those trying to land data jobs at FAANG, tech startups, or on Wall Street. It’s also a great book to prepare for Data Analyst and Machine Learning interviews too.

Of course, we wrote this Amazon Best-Seller, so we’re a tiny bit prejudiced!

Ace the Data Science Interview, written by Nick Singh and Kevin Huo

If you're looking for the eBook of Ace the Data Science Interview, we're sorry to announce that there aren't any online PDF or Kindle downloads of Ace the Data Science Interview available. However, you'll find many of the SQL interview tips from the book on DataLemur's 6000-word guide to SQL interview prep. On DataLemur, you'll also find 100+ SQL Interview Questions from FAANG and plenty more Machine Learning Interview questions too!

Ace the Data Science Interview with DataLemur: an interactive SQL and Data Analytics interview platform!

You can also find 9 other Data Science Interview books which we recommend, which complement the material from Ace the Data Science Interview very nicely! 

9 Best Data Science Interview Books for 2023

The Data Science Handbook: Advice and Insights from 25 Amazing Data Scientists

This light-read interviewed 25 leaders in Data Science - both Data Science thought leaders like DJ Patil, as well as Data Science practitioners who are leading the most innovative data teams at companies like Airbnb, Netflix, and Facebook. It has a mix of career advice for Data Scientists, perspectives on the field, and general life advice. 

So Good They Can't Ignore You: Why Skills Trump Passion in the Quest for Work You Love

In this book, Cal Newport debunks the career advice of “follow your passion". Instead, he provides the evidence-based framework for finding work you’ll love. Newport’s big idea is that becoming excellent at a skill the world finds valuable is an ideal path towards career satisfaction and success. We recommend this book to anyone confused or frustrated about their current situation.


Psst...if you like these Data Science career books

If you like these book recommendations, you are 96.7% encouraged to join our free 9-day Data Science Interview email crash course. We'll email snippets of our Amazon #1 Best Seller, Ace the Data Science Interview, as well as send real FAANG & Wall Street interview questions from our 301 page book.

Join Course
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form

What are the best business books for Data Scientists?

The 4 books we recommend Data Scientists to read to improve their business intuition and product-sense are the Personal MBA, BCG's on Strategy, Lean Analytics, and the Product Management classic Inspired.

Personal MBA

Let’s face it: as a Data Scientist, often your project’s success isn’t based on the cleverness of your technical solution, but on your ability to work effectively with business stakeholders. So, how do you work better with business people? Speak their language! This book is essentially a crash-course on the most important terms, concepts, and mental models in business, at 0.01% of the price of going to business school.

The Boston Consulting Group on Strategy

Want to be a better “big-picture” thinker (whatever that means!). This book, written by many partners at BCG, talks about concepts like organization design, change management, and developing business strategies. The frameworks and terminology in this book have permeated boardrooms everywhere - it’s much bigger than BCG! If you're frequently presenting data-driven recommendations to the C-Suite, or doing analysis that informs the company’s larger strategic vision, you need to read this book.

Lean Analytics: Use Data to Build a Better Startup Faster

Lean Analytics is valuable to anyone working in product data science, product analytics, or marketing analytics. The book walks through the most important metrics to measure for a variety of tech business models. Curious about what analytics Instagram should measure? Just read the chapter on User-Generated Content websites. Have a data analytics interview at Uber coming up? Just read the chapter on Two-Sided Marketplaces. Very practicable, actionable insights that will help you measure what matters.

I highly recommend this book especially if your preparing for an open-ended SQL take-home challenge.

Inspired: How to Create Tech Products Customers Love

Inspired beautifully combines Marty Kagan's own personal lessons in Product Management, with insights from the product culture at Amazon, Netflix, and Tesla. Our favorite sections are on Product Roadmaps and Product Vision — reading these parts of the book helped us work and communicate more efficiently with the PMs on our teams at Facebook. If you want to be bossed around by PMs and managers less, and instead take a more proactive role in what products are built, read this book.

Want Data Analytics Book Recommendations? 

If Data Analytics is more your thing, check out this list of the 17 best books for Data Analysts. We cover our favorite books in core Data Analytics topics like Statistics, SQL, and Business Analytics.

17 must-read books for Data Analysts

About The Blog Authors: Nick Singh & Kevin Huo

Connect with Nick & Kevin!

Nick Singh is a former Software Engineer at Facebook & Google, now turned career coach. His career advice on LinkedIn has earned him over 115,000 followers on the platform. Kevin Huo is a former Data Scientist at Facebook, and now a quant on Wall Street. He's helped coach hundreds of people to land data jobs at Amazon, Two Sigma, and Lyft. Together they wrote the Amazon #1 Best-Seller, Ace the Data Science Interview, which solves 201 real Data Science & Machine Learning interview questions from FAANG, Tech Startups, and Wall Street.

Ace the Data Science Interview is a #1 Amazon Best-Seller in the Databases & Big Data category!

Nick Singh then went on to found DataLemur - an interactive SQL & Data Science Interview platform, that features hundreds of real Data Analyst, Data Science, and Machine Learning interview questions from companies like Facebook, Google, and Accenture.

DataLemur has hundreds of Data Science interview questions, and covers SQL, Statistics, and ML interview questions that show up in real Data Science and Data Analyst Interviews!